Liczby: a,b,c,d są kolejnymi wyrazami malejącego ciągu geometrycznego. Suma dwóch liczb środkowych jest równa 24, a suma dwóch liczb skrajnych jest równa 36. Wyznacz te liczby. a,b,c,d - kolejne liczby ciągu geometrycznego Korzystam ze wzoru na n-ty wyraz ciągu geometrycznego an = a1*q( do potęgi (n-1) a = a1 b = a1*q c = a1*q² d
POWTÓRZENIE WIADOMOŚCI O LICZBACH CAŁKOWITYCH KL. 6– GRA BINGOZasady gry:1. Każdy uczeń przygotowuje wcześniej kwadrat i dzieli go na 9 jednakowych Następnie uczeń wybiera spośród liczb całkowitych z zakresu od -16 do 16 dziewięć różnych liczb i wpisuje je w pola swojego W dalszej części nauczyciel odczytuje polecenia lub (bardziej polecane) wyświetla je pojedynczo w formie prezentacji, a uczniowie wykonując obliczenia w pamięci, sprawdzają i zakreślają liczby, które mają na swoich Uczeń, który wykreśli wszystkie swoje liczby (prawidłowo!) zgłasza BINGO. 5. Pięć pierwszych osób, które wykreślą wszystkie liczby otrzymują pozytywne oceny lub uwagi – warto zapisywać liczby, które pojawiają się w trakcie gry, tak aby sprawnie weryfikować skreślone liczby u uczniów zgłaszających BINGO– po zakończonej grze należy jeszcze raz przeczytać polecenia ze wskazaniem poprawnych odpowiedzi oraz ewentualnymi dodatkowymi wyjaśnieniamiPolecenia:1. Wartość bezwzględna liczby -132. Iloczyn liczb 5 i -23. Suma liczb -4 i 74. Wynik działania (-3)-25. Iloraz liczb -45 i -56. Liczba (-4)27. Ile jest liczb całkowitych większych od -3 i jednocześnie mniejszych od 48. Liczba o 12 większa od -29. Wynik działania 2-(-2)10. Liczba o 2 mniejsza od -911. Największa całkowita liczba ujemna12. Do -7 dodaj -913. Liczba przeciwna do -1414. Liczba odwrotna do 1/515. Oblicz |-7|+516. GRATIS :) liczba -717. Jedyna parzysta liczba pierwsza18. Wynik działania (-15)+219. Liczba -13 powiększona o 420. Iloczyn liczb -3 i 221. Liczba, która nie jest ani dodatnia ani ujemna22. Wartość bezwzględna liczby 123. Iloraz liczb -56 i -724. Iloczyn liczb 3 i -525. Wynik działania (-8)-(-6)26. Liczba (-2)327. Wynik działania (-9)-528. Wynik działania (-45):(-3)29. Liczba o 3 mniejsza od zera30. Liczba odwrotna do -0,2531. Iloczyn liczb -3 i 432. Suma liczb 5 i 633. Liczba 7 razy większa niż 1
Uzupełnij zdania, wpisując wszystkie liczby naturalne (różne od 0), spełniające opisane warunki. Liczba 3580 dzieli się przez 2, 3, 5, 9 i 10.
wśród ponizszych liczb znajdż liczby różne od 9/5:10/18, 18/10, 1 i 4/5, 1,80, 1 i 15/20, 9,5wskaż pary równych liczb:9/4, 3/2, 2,25, 2 i 1/3, 140/60, 1,5dam najj i 10 pkt!!
print("a jest większe od b") else: print("b jest większe od a") Przykład 8. Rozbudujmy nieco poprzedni przykład. Wartości a i b mogą być dowolne. Jeżeli a jest równe b wykonaj pierwszy print. W przeciwnym wypadku wykonaj zagnieżdżoną instrukcję warunkowa elif. Po elif należy wpisać warunek a > b.
Kalkulator kombinatoryczny służy do obliczania poszczególnych zagadnień z kombinatoryki: permutacja bez powtórzeń, permutacja z powtórzeniami, wariancja bez powtórzeń, wariacja z powtórzeniami, kombinacja bez powtórzeń, kombinacja z powtórzeniami. Aby obliczyć dany wynik należy przejść do wybranego zagadnienia i wprowadzić wartości w polu: Wprowadź dane i kliknąć przycisk oblicz. Permutacje z powtórzeniami Permutację z powtórzeniami wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów n-elementowych, mając do dyspozycji tyle samo elementów, przy czym kolejność elementów w układzie jest nieistotna, a elementy mogą się Mając litery: K,O,K,L,O,K czyli 3(n1) litery „K”, 2(n2) litery „O” oraz 1(n3) literę „L”, ile ciągów (różnych napisów) możemy ułożyć, np.: KOOKKL; KOKOLK? Aby obliczyć szukaną permutacje z powtórzeniami należy wpisać ilość powtarzania się kolejnych elementów oddzielone przecinkami. W przypadku liter K,O,K,L,O,K wpiszemy ciąg: 3,2,1 litera „K” powtarza się 3 razy, litera „O” 2-razy oraz litera „L” 1 raz. Wariacje bez powtórzeń Wariację bez powtórzeń wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest istotna, a elementy nie mogą się Mając w zbiorze 5 cyfr (n): 1,2,3,4,5, na ile sposobów możemy ułożyć 3(k) elementowe ciągi, np.: 124; 325; tak, aby w ciągu NIE powtarzały się cyfry? Wariacje z powtórzeniami Wariację z powtórzeniami wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest istotna, a elementy mogą się Mając w zbiorze 5 cyfr (n): 1,2,3,4,5, na ile sposobów możemy ułożyć 2(k) elementowe ciągi, np.: 12; 32; 44; 55? Kombinacje bez powtórzeń Kombinację bez powtórzeń wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest nieistotna, a elementy nie mogą się Losując 6 liczb (k) z 49 (n) (lotto), ile jest możliwych do uzyskania układów? Liczby nie mogą się powtarzać oraz kolejność nie jest ważna. Wynik: 1, 3, 12, 34, 45, 46 jest tym samym co wynik: 3; 12; 45; 1; 46; 34 Kombinacje z powtórzeniami Kombinację z powtórzeniami wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest nieistotna, a elementy mogą się Losując 2 cyfry (k) z 4 (n) (np.: 1,2,3,4), ile jest możliwych do uzyskania układów? Liczby mogą się powtarzać oraz kolejność nie jest ważna. Wynik: 1,4 jest tym samym co wynik 4,1 Zobacz również Kalkulator błędów Kalkulator sumy ciągu Generator wykresów Kalkulator walutowy Przelicznik jednostek Przelicznik czasu Kalkulator liczb rzymskich Kalkulator wektorów Kalkulator ciągu Fibonacciego Kalkulator sylwetki Konwerter systemów liczbowych Generator liczb losowych Kalkulator całki oznaczonej Kalkulator funkcji liniowej Kalkulator koła i okręgu
liczby różne od 9/5 to : 10/18 ; 1 15/20 ; 9,5. zad.2. 1,80 i 1 4/5. zad.3-5/2 i 2,5. 2 1/7 i -2 1/7. 0,4 i 2/5. zad.4. Tak. Reklama Reklama
wśród poniższych liczb znajdź liczby różne od 9/510/18, 18/10, 1cała i 4/5, 1,80 , 1cała i 15/20, 9,5
Uzupełnij zdania , wpisując wszystkie liczby naturalne (różne od 0 ) , spełniając opisane warunki. a) jezeli liczba jest wielokrotnością liczby 25 , to jest także wielokrotnościa liczby .. b) jeżeli liczba dzieli sie przez 10 . to dzieli się także przez ..
Odpowiedzi Dagusia22 odpowiedział(a) o 17:10 10/1814/515/209,5Myśle że to jest dobrze ;D 0 0 Uważasz, że ktoś się myli? lub
Poniżej znajdują się zadania i odpowiedzi z matury na poziomie podstawowym – czerwiec 2011. Wszystkie zadania posiadają pełne rozwiązania krok po kroku, co mam nadzieję pomoże Ci w nauce do matury. Ten arkusz maturalny możesz także zrobić online lub wydrukować w formie PDF – odpowiednie linki znajdują się na dole strony.
W zadaniach typu “Ile jest liczb…” wykorzystujemy regułę mnożenia. Przykład: Ile jest liczb trzycyfrowych podzielnych przez $5$? Na pierwszym miejscu mamy $9$ możliwych cyfr: ${1, 2, 3, 4, 5, 6, 7, 8, 9}$ ( nie uwzględniamy tutaj zera, bo liczba nie może się od niego zaczynać). Na drugim miejscu mamy $10$ możliwych cyfr : ${0, 1, 2, 3, 4, 5, 6, 7, 8, 9}$. Na trzecim miejscu mamy tylko dwie możliwe cyfry: ${0, 5}$ (liczba jest podzielna przez $5$, gdy kończy się na zerem lub piątką). Z reguły mnożenia otrzymujemy: $9 \cdot 10 \cdot 2 = 180$ Odpowiedź: Istnieje 180 liczb trzycyfrowych podzielnych przez 5. Przykład: Dany jest zbiór $A = {0,3,4,5,6}$, ile liczb czterocyfrowych możemy zapisać za pomocą tych cyfr, jeżeli: a) cyfry mogą się powtarzać, b) cyfry nie mogą się powtarzać. a) Szukamy czterocyfrowej liczby złożonej tylko z elementów ze zbioru A. Cyfrę tysięcy możemy wybrać na $4$ różne sposoby, podstawiając $3, 4, 5$ lub $6$, ponieważ cyfrą tysięcy nie może być $0$. Każdą kolejną cyfrę można wybrać na $5$ sposobów, podstawiając $0, 3, 4, 5$ lub $6$. Zatem możemy otrzymać $4 \cdot 5 \cdot 5 \cdot 5 = 500$ liczb. Odpowiedź: Możemy zapisać $500$ takich liczb czterocyfrowych. b) Cyfrę tysięcy możemy wybrać na $4$ różne sposoby, ponieważ $0$ nie może być cyfrą tysięcy. Cyfrę setek możemy wybrać także na $4$ różne sposoby, ponieważ cyfra setek nie może być taka sama jak cyfra tysięcy, a mamy teraz dodatkowo $0$. Cyfrę dziesiątek możemy wybrać na $3$ różne sposoby, ponieważ nie może być ona taka sama jak cyfra tysięcy i setek, a cyfrę jedności możemy wybrać na $2$ różne sposoby, ponieważ musi być ona różna od cyfry tysięcy, setek i dziesiątek. Mamy zatem: $4 \cdot 4 \cdot 3 \cdot 2 = 96$. Odpowiedź: Możemy zapisać $96$ liczb czterocyfrowych. Przykład: Ile liczb trzycyfrowych większy od $399$ zapiszemy używając cyfr należących do zbioru ${0,1,2,3,4,5,6}$, (cyfry mogą się powtarzać). Żeby liczba była większa od $399$ na pierwszym miejscu musi stać: $4, 5$ lub $6$, zatem cyfrę setek możemy wybrać na $3$ różne sposoby. Pozostałe cyfry mogą być dowolne, możemy je wybrać na $7$ różnych sposobów, zatem otrzymujemy: $3 \cdot 7 \cdot 7 = 147$ Odpowiedź: Zapiszemy $147$ takich liczb. Przykład: Ile różnych liczb czterocyfrowych możemy zapisać wybierając cyfry ze zbioru ${0,1,3,4,5,8}$ jeżeli cyfra tysięcy ma być nieparzysta, a cyfra dziesiątek parzysta. a) cyfry mogą się powtarzać b) cyfry nie mogą się powtarzać. a) Cyfrę tysięcy możemy wybrać na $3$ różne sposoby, ponieważ wybieramy ją z cyfr nieparzystych. Cyfrę dziesiątek możemy wybrać na $4$ różne sposoby, ponieważ wybieramy ją z cyfr parzystych. Pozostałe cyfry możemy wybrać na $6$ sposobów. Zatem otrzymujemy $3 \cdot 6 \cdot 4 \cdot 6 = 432$ liczb. Odpowiedź: Możemy zapisać $432$ liczby czterocyfrowych. b) Cyfrę tysięcy możemy wybrać na $3$ różne sposoby, ponieważ wybieramy ją z cyfr nieparzystych ({$1, 3, 5$}). Cyfrę dziesiątek możemy wybrać na $3$ różne sposoby, ponieważ wybieramy ją z cyfr parzystych ({$0, 4, 8$}). Cyfrę setek możemy wybrać na $4$ różne sposoby, ponieważ nie może być ona taka sama jak cyfra tysięcy i setek. Cyfrę jedności możemy wybrać na $3$ różne sposoby, ponieważ musi być ona różna od cyfry tysięcy, setek i dziesiątek. Mamy zatem: $3 \cdot 3 \cdot 4 \cdot 3 = 108$. Odpowiedź: Możemy zapisać $108$ liczb czterocyfrowych.
. 128 328 451 299 328 204 298 374
liczby różne od 9 5